CSF pulsatility and vascular biomarkers in glaucomatous optic neuropathy

Karl Mercieca
MD FRCOphth PGCTLCP
Background

- Normal tension glaucoma (NTG) and primary open angle glaucoma (POAG) may have different aetiologies

- CSF differences have been shown in POAG and OHT
 - Pressure
 - Protein content

The Role of Cerebrospinal Fluid Pressure in Glaucoma
Pathophysiology: The Dark Side of the Optic Disc

William H. Morgan, MBBS, PhD, Dao Yi Yu, MD, PhD, and
Chandrakumar Balaratnasingan, MBBS
Hypothesis

- Increased incidence of stroke and Alzheimer’s in POAG\(^5,6\)
- CSF pulsatility changes and vascular imaging biomarkers have been identified in dementia and CVA\(^7\)

Cardiovascular risk factors

Hardening of arteries

Increased CSF pulse wave energy

? Optic nerve damage

? Glaucomatous change
Cerebrovascular disease (Stroke, Alzheimer’s disease)
Open Angle Glaucoma (NTG vs POAG)
CSF Pulse Wave Changes
Vascular Biomarkers
Increased CSF pulse wave energy
Hardening of arteries
? Optic nerve damage
Cardiovascular risk factors
? Glaucomatous change
Methods

HASTE — Half-Fourier Acquisition Single-shot Turbospin Echo

ASL-MRI — Arterial Spin Labelled perfusion scans
CSF Pulsatibility
Vascular Biomarkers

Dilated Virchow Robin spaces (VRS)
Study Design
Study Design

- MRIF funding obtained for pilot study (30 scans)
- Ethics Board approval obtained (10 months)
Study Design

- MRIF funding obtained for pilot study (30 scans)
- Ethics Board approval obtained (10 months)

8 NTG 8 POAG 8 CONTROLS
Study Design

- MRIF funding obtained for pilot study (30 scans)
- Ethics Board approval obtained (10 months)

Demographics
Diagnosis
Presenting and current IOP
CCT
Optic disc details
Visual Fields (MD and PSD)
Treatment

8 NTG
8 POAG
8 CONTROLS
Study Design

- MRIF funding obtained for pilot study (30 scans)
- Ethics Board approval obtained (10 months)

8 NTG
- Demographics
- Diagnosis
- Presenting and current IOP
- CCT
- Optic disc details
- Visual Fields (MD and PSD)
- Treatment

8 POAG
- Patient information leaflet
- Consent form
- Clinical data collection

8 CONTROLS
- MRI scan – 1 hour

MREH

WMIC
Study Design

- MRIF funding obtained for pilot study (30 scans)
- Ethics Board approval obtained (10 months)

8 NTG

Demographics
Diagnosis
Presenting and current IOP
CCT
Optic disc details
Visual Fields (MD and PSD)
Treatment

8 POAG

8 CONTROLS

Patient information leaflet
Consent form
Clinical data collection

MREH

WMIC

MRI scan – 1 hour

- Mann Whitney U test used for statistical analysis
Results
Results

<table>
<thead>
<tr>
<th></th>
<th>NTG</th>
<th>POAG</th>
<th>CONTROLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean/range)</td>
<td>61.0/41-86</td>
<td>53.6/50-82</td>
<td>65.5/54-75</td>
</tr>
<tr>
<td>M/F ratio</td>
<td>3/5</td>
<td>5/3</td>
<td>6/2</td>
</tr>
<tr>
<td>Presenting IOP</td>
<td>Mean 16 (12-18)</td>
<td>Mean 35 (26-40)</td>
<td>Mean 15 (10-19)</td>
</tr>
<tr>
<td>Current IOP</td>
<td>Mean 12 (10-17)</td>
<td>Mean 16 (11-19)</td>
<td></td>
</tr>
<tr>
<td>CCT (microns)</td>
<td>524</td>
<td>531</td>
<td>569</td>
</tr>
<tr>
<td>CD ratio</td>
<td>Mean 0.7(0.6-0.95)</td>
<td>Mean 0.75(0.6-0.90)</td>
<td>Mean 0.3(0.2-0.5)</td>
</tr>
<tr>
<td>Visual field MD</td>
<td>-12.33db</td>
<td>-10.19db</td>
<td>+0.41db</td>
</tr>
<tr>
<td>Visual field PSD</td>
<td>12.41</td>
<td>9.72</td>
<td>1.27</td>
</tr>
<tr>
<td>Basilar flow (ml/s)</td>
<td>6.1</td>
<td>5.9</td>
<td>5.7</td>
</tr>
<tr>
<td>Carotid flow (ml/s)</td>
<td>5.9</td>
<td>5.6</td>
<td>5.5</td>
</tr>
<tr>
<td>Aqueductal flow ml/s</td>
<td>0.15</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Virchov R spaces</td>
<td>Mean 44</td>
<td>Mean 40</td>
<td>Mean 16</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th></th>
<th>NTG</th>
<th>POAG</th>
<th>CONTROLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean/range)</td>
<td>61.0/41-86</td>
<td>53.6/50-82</td>
<td>65.5/ 54-75</td>
</tr>
<tr>
<td>M/F ratio</td>
<td>3/5</td>
<td>5/3</td>
<td>6/2</td>
</tr>
<tr>
<td>Presenting IOP</td>
<td>Mean 16 (12-18)</td>
<td>Mean 35 (26-40)</td>
<td>Mean 15 (10-19)</td>
</tr>
<tr>
<td>Current IOP</td>
<td>Mean 12 (10-17)</td>
<td>Mean 16 (11-19)</td>
<td></td>
</tr>
<tr>
<td>CCT (microns)</td>
<td>524</td>
<td>531</td>
<td>569</td>
</tr>
<tr>
<td>CD ratio</td>
<td>Mean 0.7(0.6-0.95)</td>
<td>Mean 0.75(0.6-0.90)</td>
<td>Mean 0.3(0.2-0.5)</td>
</tr>
<tr>
<td>Visual field MD</td>
<td>-12.33db</td>
<td>-10.19db</td>
<td>+0.41db</td>
</tr>
<tr>
<td>Visual field PSD</td>
<td>12.41</td>
<td>9.72</td>
<td>1.27</td>
</tr>
<tr>
<td>Basilar flow (ml/s)</td>
<td>6.1</td>
<td>5.9</td>
<td>5.7</td>
</tr>
<tr>
<td>Carotid flow (ml/s)</td>
<td>5.9</td>
<td>5.6</td>
<td>5.5</td>
</tr>
<tr>
<td>Aqueductal flow ml/s</td>
<td>0.15</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Virchov R spaces</td>
<td>Mean 44</td>
<td>Mean 40</td>
<td>Mean 16</td>
</tr>
</tbody>
</table>
Results

POAG group

Higher number of centrum semiovale (CSOV) dilated Virchow Robin spaces (VRS) than controls: \(p=0.008 \)

NTG group

Higher number of CSOV VRS than controls: \(p=0.021 \)
Increased aqueductal systolic stroke volume: \(p=0.035 \)

- No significant difference between mean age of groups
Conclusions
Conclusions

Open Angle Glaucoma (NTG an POAG)

Cerebrovascular disease

Vascular Biomarkers
Conclusions

Open Angle Glaucoma
(NTG an POAG)

Cerebrovascular disease

Vascular Biomarkers

CSF Pulsatility

Normal Tension Glaucoma
Conclusions

Open Angle Glaucoma (NTG an POAG)

Cerebrovascular disease

Vascular Biomarkers

CSF Pulsatility

? CSF Pressure Differences

? Ocular Blood Flow

Normal Tension Glaucoma
The Future?
Acknowledgements

Miss Fiona Spencer
Thomas Hansen
Dr John Cain
Prof Alan Jackson
Prof David Henson
Amy Watkins
Trainees
Patients
Controls